MATH 590: QUIZ 10 SOLUTIONS

Find the singular value decomposition of $A = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ by following the steps below. Please indicate clearly each step in your solution. Each step is worth 2 points.

1. Calculate $A^t A$ and its characteristic polynomial $p_{A^t A}(x)$.

Solution.
$$p_{A^tA}(x) = \begin{vmatrix} x-1 & 1 & 0\\ 1 & x-1 & 0\\ 0 & 0 & x-4 \end{vmatrix} \{(x-1)^2 - 1\}(x-4) = x(x-4)(x-2)$$

2. Find the non-zero eigenvalues of $A^t A$: $\lambda_1 > \lambda_2 > 0$. Solution. $\lambda_1 = 4, \lambda_2 = 2.$

3. Find: A unit eigenvector u_1 of λ_1 , a unit eigenvector u_2 for λ_2 and a unit vector u_3 such that u_1, u_2, u_3 is an orthonormal basis for \mathbb{R}^3 . 1 0 (1 2 0) (1 0 0)(0)

Solution For
$$E_4 = \text{null space of} \begin{pmatrix} -3 & -1 & 0 \\ -1 & -3 & 0 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{\text{EROs}} \begin{pmatrix} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
, so we take $u_1 := \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.
For $E_2 = \text{null space of} \begin{pmatrix} -1 & -1 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \xrightarrow{\text{EROs}} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, so we take $u_2 := \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$.

Since $A^{t}A$ is symmetric, with distinct eigenvalues, the unit eigenvectors for each eigenvalue will be an orthonormal basis for \mathbb{R}^3 , so we for u_3 , a unit vector generating $E_0 = \text{null space of} \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix} \xrightarrow{\text{EROs}}$ /1 1 0) / 1)

$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \text{ so } u_3 := \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}. \text{ Thus, we have an orthonormal basis for } \mathbb{R}^3.$$

4. Set $\sigma_1 = \sqrt{\lambda_1}$, $\sigma_2 = \sqrt{\lambda_2}$, $v_1 = \frac{1}{\sigma_1}Au_1$, and $v_2 = \frac{1}{\sigma_2}Au_2$. Show that v_1, v_2 is an orthonormal basis for \mathbb{R}^2 .

Solution.
$$\sigma_1 = \sqrt{4} = 2, \sigma_2 = \sqrt{2}, v_1 = \frac{1}{2} \begin{pmatrix} -1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, v_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

Clearly v_1, v_2 is an orthonormal basis for \mathbb{R}^2 .

is an orthonormal basis fo

5. Let P be the orthogonal matrix whose columns are u_1, u_2, u_3, Q the orthogonal matrix whose columns are v_1, v_2 , and $\sum = \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \end{pmatrix}$. Verify that $A = Q \sum P^t$.

Solution.
$$AP = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & \sqrt{2} & 0 \\ 2 & 0 & 0 \end{pmatrix}.$$

 $Q\sum = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{pmatrix} = \begin{pmatrix} 0 & \sqrt{2} & 0 \\ 2 & 0 & 0 \end{pmatrix}.$ Thus, $AP = Q\sum$, so $A = Q\sum P^t$, since $P^{-1} = P^t.$